
BBEdit version 2.2 User’s Manual Page 1

BBEdit Extensions
BBEdit 2.2 supports the addition of external code modules known as “BBEdit Extensions”.
This chapter will describe the functionality of the extensions that ship with BBEdit,
including:

• 827
• Capitalize Sentences
• Concatenate Files
• Educate Quotes
• Hello World
• Copy Lines Containing
• Cut Lines Containing
• Prefix/Suffix Lines

The section “Writing BBEdit Extensions” will discuss how to write extensions for BBEdit.
You can skip this chapter if you aren’t a programmer or have no desire to write extensions.

For details on installing the BBEdit Extensions folder, see the “Installing BBEdit” chapter.

General Notes:

• To use an extension, choose its name from the Extensions menu. If you do not
see this menu in the menu bar, make sure that you have installed the BBEdit
Extensions folder correctly.

• Some extensions may require that a document window be open and in front in
order to do their work; others may require a selection range in the front
document window. If these requirements aren’t met, the extensions name in the
Extensions menu will be dimmed.

• All of these extensions are demos, to show how to write extensions for BBEdit.
The source for each one is included, and can be found in the “Sources” folder
within the “BBEdit Extensions” folder. Because they are demos, some of the
extensions are trivial and don’t perform any useful day-to-day function.

BBEdit version 2.2 User’s Manual Page 2

827

As its name implies, “827” converts eight-bit special Macintosh characters to reasonable 7-
bit ASCII equivalents. This is quite useful for preparing text for posting to an information
service that doesn’t gracefully handle 8-bit characters. 827 will work on the front document
window; when you choose its name from the Extensions menu, 827 will present
following dialog:

Each pair of radio buttons on the left half of the dialog determines how that particular 8-bit
character will be converted. Additionally, curly quotes such as “” and will also be
straightened.

The pairs of radio buttons on the right determine what action will be taken. If there is a
selection range in the document, “Convert Selection” will be enabled, and if you click on it,
only the selection range will be affected. If “Change In Place” on the lower pair of buttons
is selected, then the text being converted will be replaced with the converted text;
otherwise, the converted text will be placed on the Clipboard for easy pasting into a
terminal program, and the text in the document will be unaffected.

827 was written by Jamie McCarthy, based on a prototype “Prepare Usenet Posting”
extension by Rich Siegel.

BBEdit version 2.2 User’s Manual Page 3

Prefix/Suffix Lines

Prefix/Suffix Lines is useful for adding or removing text from the beginning or end of every
line in the document (or selection range).

The “Selection Only” check box will only be enabled if there is a selection range in the
document; if its checked, only the text in the selection range will be affected.

The “Insert” radio button will place the text that you enter in the text field at the beginning
or end of each line, depending whether “Beginning” or “End” is selected.

The “Delete” radio button will search for the text that you enter in the edit field at the
beginning or end of each line, and if its there, will delete it.

This extension is handy for preparing followups to Usenet articles, or for cleaning up
downloaded articles.

BBEdit version 2.2 User’s Manual Page 4

Writing Extensions

This chapter goes into some technical detail. If youre not a programmer, you can safely skip
this section without missing anything.

Introduction

BBEdit version 2.2 has a facility for calling code modules which are not part of the
application itself. The main reason for this facility is so that users and third-party
programmers can add specific functionality to BBEdit which goes beyond BBEdits own
charter. For example, one such code module might prepend Usenet attributions to each line
in a selected range of text. This is a useful function, but its not of interest to everyone.

General Guidelines

BBEdit extensions are built as standalone code resources of type ‘BBXT’. The capability to
build such resources is an integral part of THINK C and THINK Pascal. Users of MPW can
also build standalone code resources, but with less ease.

There may be any number of extensions per file, and extensions can use their own
resources. Also, BBXT resources can be of any resource ID, since BBEdit manages the
extensions in such fashion that resource name or ID conflicts dont happen. Each BBXT
resource in a file should have a name as assigned by ResEdit’s “Get Info” command; this
name will appear under the Extensions menu in BBEdit..

Note: If there are BBXT resources from different files with the same name, users may
become confused. Neither I nor BBEdit will arbitrate extension names.

When BBEdit starts up, it takes account of the extensions in the “BBEdit Extensions” folder.
The BBEdit Extensions folder can reside in the same folder as BBEdit itself. Under System
6, the BBEdit Extensions folder can also reside in the system folder on the startup disk;
under System 7, the BBEdit Extensions folder can also reside in the Extensions folder in
the system
folder on the startup disk.

Files containing extensions must be of type ‘BBXT’. The creator can be anything you like,
although files with a creator of ‘R*ch’ will have a standard icon. (You can, of course, create
bundle resources and icons to give the files any icons you desire.)

BBEdit extensions should be as friendly as possible. They should take great care to release
any memory that they allocate while running, and they should leave no windows on the
screen after they return to BBEdit. In general, BBEdit extensions should be considered one-
shot text filters: they do their thing, then exit. They should put no menus in the menu bar,
and should not have an event loop. (They *can* call ModalDialog. Its recommended that
you use, or layer on top of, the standard filter that BBEdit provides.)

You should assume that any callback will move memory. This means that if you keep
pointers into any relocatable blocks, pass addresses inside relocatable blocks as function
arguments, you should lock the block first. For maximum friendliness, move it high with
MoveHHi() first.

Extensions can put up modal dialogs and alerts, provided they’re taken down again before
the extension exits; they can also call Standard File or any system services necessary, as
long as no attempt is made to bring another application to the front.

BBEdit version 2.2 User’s Manual Page 5

All other caveats with respect to managing A4 for code resources with globals remain in
effect.

BBEdit version 2.2 User’s Manual Page 6

Programming Interface

Given all of these constraints, what can extensions do?

The answer is: pretty much any transformation on a window’s text that they please.

The interface to BBEdit is kept in a structure known as an ExternalCallbackBlock.
This structure begins with a 16-bit integer which is the version number of the callback
block. If the callback block passed to you is higher than one you know about, then there is
additional functionality available that you probably don’t know about. Conversely, if the
version number is less than the one you know about, some functionality that your extension
requires may not be available.

The current callback interface version is 2.

Here is the C structure definition for an ExternalCallbackBlock:

typedef struct {
short version;

// version 1 callbacks

pascal Handle (*GetWindowContents)(WindowPtr w);

pascal void (*GetSelection)(long *selStart, long *selEnd,
long *firstChar);

pascal void (*SetSelection)(long selStart, long selEnd, long
firstChar);

pascal void (*GetDocInfo)(WindowPtr w, Str255 fName, short
*vRefNum, long *dirID);

pascal long (*GetModDate)(WindowPtr w);

pascal Handle (*Copy)(void);

pascal Handle (*Paste)(Handle pasteText);

// version 2 callbacks

/* Text-Editing stuff */
pascal long (*GetLastLine)(void);

pascal long (*GetLineNumber)(long selection);

pascal long (*GetLineStart)(long selection);

pascal long (*GetLineEnd)(long selection);

pascal long (*GetLinePos)(long line);

pascal void (*Insert)(char *text, long len);

pascal void (*Delete)(void);

BBEdit version 2.2 User’s Manual Page 7

/* Getting and Setting window text */
pascal void (*SetWindowContents)(WindowPtr w, Handle h);

pascal void (*ContentsChanged)(WindowPtr w);

/* Reading file text */
pascal Handle (*GetFileText)(short vRefNum, long dirID,

Str255 fName, Boolean *canDispose);

/* Direct user-interface calls */
pascal Boolean (*GetFolder)(Str255 prompt, short

*vRefNum, long *dirID);

pascal Boolean (*OpenSeveral)(Boolean sort, short
*file_count, StandardFileReply ***files);

pascal DialogPtr (*CenterDialog)(short dialogID);

pascal Boolean (*StandardFilter)(DialogPtr d, EventRecord
*event, short *item);

pascal void (*FrameDialogItem)(DialogPtr d, short
item);

pascal WindowPtr (*NewDocument)(void);

pascal WindowPtr (*OpenDocument)(void);

/* Utility Routines */
pascal Handle (*Allocate)(long size, Boolean clear);

pascal long (*FindPattern)(char *text, long text_len,
long text_offset, char *pat, long pat_len,
Boolean case_sensitive);

pascal void (*ReportOSError)(short code);

/* Preference routines */
pascal void (*GetPreference)(ResType prefType, short

req_len, void *buffer, short *act_len);

pascal void (*SetPreference)(ResType prefType, short
req_len, void *buffer, short *act_len);

} ExternalCallbackBlock;

Each field of the callback block is a pointer to a routine. Each routine is called with the
Pascal calling convention; in the following descriptions the pascal keyword is omitted for
clarity.

Handle (*GetWindowContents)(WindowPtr w);

returns a handle to the text in the window pointed to by w. This routine should only
be called on windows which have a window kind of userKind.

BBEdit version 2.2 User’s Manual Page 8

void (*GetSelection)(long *selStart, long *selEnd, long *firstChar);

Sets the 32-bit integers pointed to by the arguments to the character offsets of the
start of the selection, the end of the selection, and the first visible character in the
active editing window.

void (*SetSelection)(long selStart, long selEnd, long firstChar);

Sets the selection range and first visible character in the active editing window to
the values passed. If firstChar is -1, the selection range will be centered in the
window.

void (*GetDocInfo)(WindowPtr w, Str255 *fName, short *vRefNum, short
*dirID);

Returns information about the window pointed to by w. If the window corresponds to
a document that doesn’t exist on disk, then fName will be an empty string, and
vRefNum and dirID will be set to zero. This routine should only be called on
windows with a window kind of userKind.

long (*GetModDate)(WindowPtr w);

Returns the modification date (in Macintosh time) of the document whose window is
pointed to by w. If the document is saved on disk, then the last-modified time of the
file is returned; otherwise the time of last edit is returned. This routine should only
be called on windows with a window kind of userKind.

Handle (*Copy)(void);

Returns a handle to a copy of the text enclosed by the current selection in the active
document. The caller is responsible for disposing of this handle when finished with
it.

Handle (*Paste)(Handle pasteText);

Pastes the text in the handle pointed to by pasteText into the current selection
range of the active document. The caller is responsible for disposing of this handle
when finished with it.

long (*GetLastLine)(void);

Returns the number of lines in the active editing document.

long (*GetLineNumber)(long selection);

Returns the line number of the character offset indicated by selection.

long (*GetLineStart)(long selection);

Returns the character offset of the beginning of the line that selection is on.

long (*GetLineEnd)(long selection);

Returns the character offset of the end of the line that selection is on.

BBEdit version 2.2 User’s Manual Page 9

BBEdit version 2.2 User’s Manual Page 10

long (*GetLinePos)(long line);

Returns the character offset of the beginning of line.

void (*Insert)(char *text, long len);

Inserts the len characters pointed to by text in the current selection range of the
active editing document.

void (*Delete)(void);

Deletes the characters enclosed by the selection range in the active editing
document.

void (*SetWindowContents)(WindowPtr w, Handle h);

Replaces the contents of the document designated by w with the contents of the
handle h.

Note: after calling SetWindowContents, the handle belongs to the window, and
must not be disposed. Also, if you modify the contents or size of the handle
pointed to by h after using it in a SetWindowContents() call, be sure to call
ContentsChanged() for w.

void (*ContentsChanged)(WindowPtr w);

This routine should be called if you directly modify the text returned from a
GetWindowContents() call.

Handle (*GetFileText)(short vRefNum, long dirID, Str255
fName, Boolean *canDispose);

Loads the contents of the designated file’s data fork into memory, and returns a
handle to those contents. If there was an error (insufficient memory, file system
error, etc), GetFileText() will return NIL.

The canDispose argument will be set to TRUE if the text was loaded from disk,
FALSE if the text belongs to an open window. In the event that canDispose is
TRUE, then you should dispose of the text (or use it in a SetWindowContents()
call). If canDispose is FALSE, then you must not dispose the handle, or
else you’ll crash BBEdit. Also, you must not modify the contents of the handle if
canDispose is FALSE.

BBEdit version 2.2 User’s Manual Page 11

Boolean (*GetFolder)(Str255 prompt, short *vRefNum, long *dirID);

Displays a Standard File dialog box for choosing a folder. Returns TRUE if a folder
was selected, FALSE if the user clicked the Cancel button. The vRefNum and
dirID of the chosen folder are returned in vRefNum, and dirID, respectively.

Boolean (*OpenSeveral)(Boolean sort, short *file_count,
StandardFileReply ***files);

Displays a Standard File box for choosing multiple files at once. Returns TRUE if the
user chose any files, FALSE if the Cancel button was clicked. If sort is TRUE, then
the files returned will be sorted in alphabetical order; otherwise, the files will be
returned in the order the user added them to the list.

The number of files chosen will be returned in file_count, and a handle to a list
of StandardFileReply records (system 7 style) will be returned in files.

DialogPtr (*CenterDialog)(short dialogID);

Loads the dialog box indicated by dialogID and centers it on the screen. The
dialog ID should correspond to a dialog which is available in the extension’s
resource file, and nowhere else. (The resource map chain is configured such that
none of your dialog IDs can conflict with BBEdit’s.)

Boolean (*StandardFilter)(DialogPtr d, EventRecord *event, short
*item);

This standard filter performs some useful standard behavior, such as outlining the
default button with a thick border, and handling activates and deactivates for
BBEdit’s own windows. It is strongly recommended that you pass this pointer as the
filterProc argument when calling ModalDialog() or Alert(). If you’re
writing custom dialog filters in your extension, you should call this routine directly
after doing your own preprocessing.

void (*FrameDialogItem(DialogPtr d, short item);

This routine will draw a rectangle around the dialog item specified. If the item is a
line, a line will be drawn using true gray.

WindowPtr (*NewDocument)(void);

Opens a new untitled document, and returns a pointer to its window. This document
becomes the current document. Will return NIL if for some reason the window
couldn’t be opened.

BBEdit version 2.2 User’s Manual Page 12

WindowPtr (*OpenDocument)(void);

Puts up BBEdit’s standard Open dialog for choosing a file. If the user confirms the
dialog and the document is successfully opened, returns a pointer to its window. Will
return NIL if the user cancels the dialog or if an error occurred while opening. (If
some system error occurs, BBEdit will pose the alert box.)

Handle (*Allocate)(long size, Boolean clear);

Allocates and returns a handle of size bytes. If the clear argument is TRUE, the
handle will be zeroed. The handle returned will be a real handle, but may reside in
MultiFinder temp memory. As with any handle, you should avoid locking handles
returned by Allocate() for any length of time, and you should dispose of the
handle before returning.

long (*FindPattern)(char *text, long text_len, long text_offset,
char *pat, long pat_len,
Boolean case_sensitive);

Searches the text buffer pointed to by text for the string of characters pointed to
by pat. text_len is the amount of text to search. text_offset is the position
relative to the start of the text to start searching. pat_len is the length of the
string to match. If case_sensitive is TRUE, then the case of potential matches
will be checked.

FindPattern() will return the offset relative to the start of the text that the
string was found. If the string was not found, FindPattern() will return -1.

void (*ReportOSError)(short code);

Displays an alert box with the proper OS error message corresponding to the OS
result code given in code. This is handy for reporting filesystem errors, out of
memory, and things of that sort.

BBEdit version 2.2 User’s Manual Page 13

void (*GetPreference)(ResType prefType, short req_len, void
*buffer, short *act_len);

void (*SetPreference)(ResType prefType, short req_len, void
*buffer, short *act_len);

The GetPreference and SetPreference calls are for extensions to use to save
and retrieve extension-specific information across runs. The settings are stored in
the BBEdit Prefs file as resources.

GetPreference will retrieve the preference data stored in the resource of
prefType, resource ID 128, and copy the contents of that resource into the data
pointed to by buffer. In all cases, req_len represents the maximum number of
bytes which will be copied. (Warning: the amount of data allocated in buffer, be it
a static structure or a handle, must be equal to or greater than req_len, or else
havoc will occur.) The word pointed to by act_len will be filled in with the actual
number of bytes copied; this is always less than or equal to req_len. If act_len
is negative, the value in act_len is an OS error code (usually resNotFound if
you’re calling GetPreference with a virgin Preferences file).

SetPreference is the complement of GetPreference; it writes out the data in
buffer to a resource of type resType, id 128. req_len and act_len behave
as for GetPreference.

For examples of how to use the various call backs, look at the sources to the standard
extensions in the “Sources” folder, in the “BBEdit Extensions” folder.

BBEdit version 2.2 User’s Manual Page 14

Demo Extensions

In addition to 827 and Prefix lines, the following demo extensions are supplied:

Capitalize Sentences

Capitalize Sentences will capitalize the first word in every sentence in the selection range.
The entire document will be affected if no selection range exists. This is a very simple
extension that demonstrates the use of some of the BBEdit extension facilities.

Concatenate Files

Concatenate Files is a simple extension which demonstrates more of BBEdits extension
facilities. This extension poses an “Open Several…” dialog in which you can specify a
number of text files. The files you designate will be concatenated and the text of all of them
will be placed in a new untitled window (provided that there is enough memory).

Educate Quotes

Educate Quotes is a simple extension which converts straight quotes in your document into
“smart” quotes, just as if you had manually gone through the document and re-typed all of
the quotation marks with Smart Quotes turned on for the document.

Hello World

Hello World is a trivial extension that creates a new untitled document window with the
text “Hello World” in it. It is purely a demo, with no useful function whatsoever.

Copy Lines Containing
Cut Lines Containing

These extensions will search through the current document for lines which contain the
search string that you enter in the dialog box. Each line found will be placed in the
Clipboard. If you use “Cut Lines Containing”, each line will also be deleted from the
document.

